Ensemble ForecastingLab Activities

M. Mullusky & J. Demargne

J. Schaake, E. Welles, D.-J. Seo, H. Herr,

L. Wu, X. Fan, and S. Cong

OHD, 04/21/04

Content

- Introduction and Ensemble Activities
- Ensemble Pre-Processor Methodology
- Ensemble Pre-Processor Status by Component
 - Ensemble Generation
 - Calibration
 - Evaluation & Verification
 - Ensemble Product & Visualization
 - Papers
- ESP system
 - Current ESP System: SS-SAC, Ensemble Post-Processor
 - Future ESP System: VAR, Processors for other uncertainties
 - Verification
 - Architecture
- Conclusion

Introduction

- Main goal of ensemble activities:
 - Seamless and consistent probabilistic forecasts for all lead times
 - Accounts for both meteorological and hydrologic uncertainties
 - Verify ESP performance in both space and time

- The time scale is currently tied to the lead times of available meteorological forecasts:
 - 1 to 5 days: short term
 - 6 to 14 days: medium range
 - Two weeks and beyond: long range

Ensemble Activities

Main activities for the whole ESP system

^{*} new options required for specific forecast points

1. Short-Term Calibration: at each time step for the whole year, compute the parameters of the joint distribution of observed and forecast precipitation/temperature values

Example for PQPF/PQTF

2. Generate Short-Term PQPF/PQTF Distribution: at each time step for the forecast period, compute the parameters of the conditional distribution of future precipitation/temperature values

Example for PQPF/PQTF

3. Short-Term Distribution Mapping: at each time step of the forecast period, generate ensemble points given the conditional distribution of future precipitation/temperature from climatology time series

Ensemble points incorporate the skill of the single value forecast Space-time properties are similar to the historical events properties

4. Distribution Mapping if no QPF/QTF Forecast: at each time step of the forecast period, use the smoothed climatology distribution of historical precipitation/temperature and distribution mapping to generate ensembles

Space-time properties are similar to the historical events properties

5. Climate adjustments: integrates days 1-365 meteorological forecasts/climate outlooks from NCEP/CPC. The pre-processor adjusts smoothed historical mean areal precipitation (MAP) and temperature (MAT) time series with respect to the current meteorological forecasts/climate outlooks.

*Pre-processor will only do climate adjustments if no QPF/QTF forecast

Content

- Introduction and Ensemble Activities
- Ensemble Pre-Processor Methodology
- Ensemble Pre-Processor Status by Component
 - Ensemble Generation
 - Calibration
 - Evaluation & Verification
 - Ensemble Product & Visualization
 - Papers
- ESP system
- Conclusions

Pre-Processor Status: Ensemble Generation

- Delivered enhancements (04/19/04 delivery)
 - Create one unified pre-processor
 - Allow non 12Z forecasts
 - Extend the QPF from the control file

Future enhancements

- Allow ingestion of NetCDF data
- Modify the 6-10 day temperature adjustments. Add the 8-14 day temperature and precipitation adjustments
- Compute short term temperature ensembles more efficiently (remove redundant NQT)
- Add Forecaster Control
- Enhance the short term procedure to use the CPC precipitation forecasts for days 2-5 if no RFC forecast is available
- Enhance the short term procedure to use the CPC precipitation and temperature forecasts for days 6-14 if no RFC forecast is available

Pre-Processor Status: Calibration

- Delivered enhancements (Dec. 03 delivery)
 - Three RFCs are using Linux parameters
- Future Enhancements
 - Update parameters
 - Combine ens_pre_cp and ens_pre_cp2 into one operationally robust calibration program
 - Estimate parameters for days 1-5 from CPC forecasts for ABRFC and MARFC, compare to parameters derived from RFC archive
 - Enhance operational calibration program to include the short term calibration procedures

Pre-Processor Status: Evaluation

Current enhancements:

 Created a research evaluation prototype to evaluate the goodness of fit of the model by comparing a simulated joint distribution with the real forecast-observation distribution

• Future Enhancements:

- Add a bivariate normality test to the evaluation prototype
- Provide analysis to test cases for three RFCs for days 1-5 precipitation and temperature
- Develop a checking technique for the estimate of rho

Pre-Processor Status: Verification

Current enhancements:

- Created a verification developmental prototype that aims at assessing the quality of days 1-5 precipitation and temperature ensembles
 - Includes the ensemble generation component to simulate ensembles
 - Output: ~20 statistics including Nash-Sutcliffe Efficiency, Brier Skill Score, and Heidke Skill Score

Future Enhancements:

- Integrate other verification statistics (Talagrand diagram, discrimination diagram)
- Extend lead times

Pre-Processor Status: Product Analysis & Display

ESPADP

- Delivered Enhancements (04/19/04 delivery)
 - > ESPADP can read in the "PQPT/PQTF" output data cards
 - Fixed the "OBSOverlayPRD" and "OverlayPRD" feature
- Future Enhancements
 - >???

Pre-Processor Status: Papers

- Paper 1: motivation for a new methodology
- Paper 2: presentation of the short-term ensemble pre-processor with example of results for daily precipitation and temperature ensembles at CNRFC
- Paper 3: results from applying the short-term ensemble pre-processor at ABRFC, CNRFC and MARFC

Content

- Introduction and Ensemble Activities
- Ensemble Pre-Processor Methodology
- Ensemble Pre-Processor Status by Component
- ESP system
 - Current ESP System: SS-SAC, Ensemble Post-Processor
 - Future ESP System: VAR, Processors for other uncertainties
 - Verification
 - Architecture
- Conclusion

Current ESP System

Current ESP System: State Updating & Post-Processor

- SS-SAC (State-Space Sacramento Model): updates state variables through data simulation using latest observed streamflow
 - Requires to re-calibrate Sacramento Model parameters and to estimate uncertainty of inputs, state variables and parameters
- Post-Processor: accounts for all hydrologic uncertainties collectively
 - Parametric uncertainty & structural uncertainty in hydrologic model, as well as model initial conditions uncertainty
 - Corrects for systematic model biases

Future ESP System

Future ESP System: Individual Uncertainty Processors

- Goal: to explicitly account for individual sources of hydrologic uncertainties
- Initial Conditions Uncertainty Processor (VAR Project): to reduce and to quantify uncertainty in the initial conditions and to effect automatic run-time modification
 - Variational assimilation-based technique assimilates streamflow observations at the headwater basin outlet, potential evaporation and precipitation in real time
- Parametric Uncertainty Processor: to capture propagation of long-memory errors and extremely nonlinear errors and to simplify post-processing
- Structural Uncertainty Processor

Future ESP System: Verification

- Package to quantify quality of input & output ensembles
- Retrospective verification based on a retrospective simulation of ESP system
 - Ensembles of Precipitation, Temperature, & Streamflow
 - Needs to integrate the Ensemble Pre-Processor and Post-Processor
- ESP Verification System (ESPVS) currently under redevelopment
 - Based on Franz and Sorooshian (2002) and others
 - Includes Ranked Probability Score (RPS), Ranked Probability Skill Score (RPSS), discrimination diagram, & reliability diagram 22

Future ESP System: Architecture

- Follow a structured development process
 - Develop Use Cases to help discover system requirements
 - Document requirements to ensure more useable and maintainable software
- Focus on services based architecture to permit faster science infusion
 - http://www.nws.noaa.gov/ohd/hrl/hseb/hseb_pdf_links.htm
 - Communication between modules with XML

HEPEX Hydrologic Ensemble Prediction Experiment

Goal

 Develop "engineering quality" hydrologic ensemble prediction procedures for time scales (flash-flood to 1-yr) and space scales (1-km to continental)

Organization

- IAHS (PUB), GEWEX (WRAP), WMO
- Initial Workshop: ECMWF, March 2004
 - Develop science plan

Conclusion

